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Abstract. In this paper, we shall study large deviation principle for random upper
semicontinuous functions, and obtain Cramér type theorems for those whose underlying space
is a separable Banach space of type p.

1. Introduction. The large deviation principle (LDP), which characterizes asymp-
totic behavior of the probabilities of rare events, has been one of the most important subjects
in probability since 1930’s. It has advanced the theory of probability and given some useful
tools in application. Cerf [2] proved a Cramér type LDP for random compact sets in a sep-
arable Banach space of type p with respect to the Hausdorff metric dH . On the other hand,
random upper semicontinuous functions, which is the extension of a random sets, is stud-
ied vigorously in recent years. Theoretically, it provides an interesting prototype in general
topology and functional analysis as well as probability theory and is expected to contribute
the development of those fields. It also conceives fruitful applications in the wide area such
as statistics, engineering and social science. Ogura, Li and Wang [8] studied several topolo-
gies including some new ones in the space of upper semicontinuous functions, and obtained
some Cramér and Sanov type LDP’s for random upper semicontinuous functions with com-
pact convex levels with respect to those topologies. However, the work in front was restricted
to the case where the underlying space is a d-dimensional Euclidean space Rd and the upper
semicontinuous functions have convex level sets. It is slightly immature theoretically, and has
a less range of applications.

In this paper, we remove convexity from the conditions on the level sets, and prove a
Cramér type LDP for random upper semicontinuous functions on the underlying separable
Banach space. For this purpose, we used a property of type p space, and strengthened a
condition of Ogura, Li and Wang [8] as follows: E[exp{λ‖X(0)‖K}] < ∞, for any λ > 0
(see Section 2 and 3 for the notation).

The rest of the paper is structured as follows. In Section 2, we give some preliminary
results about random sets and random upper semicontinuous functions which are needed
later. In Section 3, we first define rate functions and LDP, and then state a general version
of Cramér’s theorem. Finally, we show that the Cramér type LDP for random upper semicon-
tinuous functions.
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2. Preliminaries. Throughout this paper, we assume that (Ω,A, P ) is a complete
probability space, (X, ‖ · ‖X) is a separable Banach space with the dual space X∗. Let K =
K(X) be the family of all non-empty closed subsets of X and let Kk = Kk(X) (resp. Kkc =
Kkc(X)) be the family of all non-empty compact (resp. compact convex) subsets of X. For an
element A of Kk , we denote by coA the closed convex hull of A. Define the Hausdorff metric
dH by

dH (A,B) = max

{
sup
a∈A

inf
b∈B

‖a − b‖X, sup
b∈B

inf
a∈A

‖b − a‖X

}
,

for A,B ∈ Kk . Then Kk is a complete separable metric space with respect to the Hausdorff
metric dH (see [7, Theorem 1.1.3]). It is equipped with the Minkowski addition and the scalar
multiplication

A + B = {a + b ; a ∈ A, b ∈ B} , tA = {ta ; a ∈ A} ,

for A,B ∈ Kk and t ∈ R. We denote by clA the closure of A, and also ‖A‖K = dH ({0}, A) =
supa∈A ‖a‖X. Denote by B∗ the unit ball of X∗. The space (B∗, w∗) is compact, separable
and metrizable with respect to the weak∗ topology w∗ in X∗. Denote by C(B∗, w∗) the space
of all real bounded continuous functions on B∗ with respect to the weak∗ topology w∗ with
the uniform norm ‖ · ‖C(B∗) (‖f ‖C(B∗) = sup{|f (x∗)| ; x∗ ∈ B∗} for f ∈ C(B∗, w∗)). Then
C(B∗, w∗) is a separable Banach space.

For each A ∈ Kkc(X), define the support function s(A)(x∗) : B∗ → R by

s(A)(x∗) = sup{〈x∗, x〉 ; x ∈ A} , x∗ ∈ B∗ ,

where 〈·, ·〉 is the paring. Then it satisfies the following properties: for any A1, A2 ∈ Kkc(X)

and t ∈ R+ = [0,∞),
(1) s(A1) = s(A2) ⇔ A1 = A2, s(A1) ≤ s(A2) ⇔ A1 ⊂ A2,
(2) s(A1 + A2) = s(A1) + s(A2), s(tA1) = ts(A1),
(3) dH (A1, A2) = ‖s(A1) − s(A2)‖C(B∗).

Hence, the mapping j : Kkc(X) → C(B∗, w∗) defined by j (A) = s(A) for A ∈ Kkc(X) is
an isometric embedding of (Kkc(X), dH ) into a closed convex cone of the separable Banach
space (C(B∗, w∗), ‖ · ‖C(B∗)) (see [7, Theorem 1.1.12]).

DEFINITION 2.1. A set-valued mapping F : Ω → K(X) is called a set-valued ran-
dom variable or a random set if for each subset A ∈ K(X),

F−1(A) = {ω ∈ Ω ; F(ω) ∩ A �= ∅} ∈ A .

A Kk(X)-valued random variable is defined through the same way.
Let I = [0, 1]. A function u : X → I is upper semicontinuous if and only if for

any α ∈ (0, 1], the level set [u]α = {x ∈ X ; u(x) ≥ α} is a closed subset of X. For any
two upper semicontinuous functions u1, u2 define the two operations of addition and scalar
multiplication:

(u1 + u2)(x) = sup{α ∈ (0, 1] ; x ∈ [u1]α + [u2]α}, for any x ∈ X ,(2.1)
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(tu1)(x) = sup{α ∈ (0, 1] ; x ∈ t[u1]α} , for any x ∈ X, t ∈ R .(2.2)

Let F = F(X) be the family of upper semicontinuous functions u : X → I with the
level set [u]1 = {x ∈ X ; u(x) = 1} non-empty. F is not a vector space with respect to the
above addition and multiplication, since we can not find any inverse of u in general. Such an
upper semicontinuous function is also called a special fuzzy set in some literatures (e.g. [7]).

Let Fk = Fk(X) be the family of all functions u in F with their support sets [u]0+ =
cl{x ∈ X ; u(x) > 0} being compact subsets of X. An element u in Fk is considered as an
element of the space D(I ;Kk) = D(I ;Kk(X)) of all functions u : I → Kk which is left
continuous in (0, 1] and has right limit in [0, 1). We denote by u(α) the α-level set [u]α of u

for α ∈ (0, 1], and u(0) := clu(0+) = cl{x ∈ X; u(x) > 0} (we use the same symbol u, since
no confusion occur). Then Fk is identified with the subspace Dd(I ;Kk) = Dd(I ;Kk(X))

which consists of all decreasing u ∈ D(I ;Kk) ; u(α) ⊃ u(β) whenever 0 ≤ α ≤ β ≤ 1.
Using the addition operation in (2.1) and scalar multiplication operation in (2.2), we have the
following relations:

[u1 + u2]α = [u1]α + [u2]α , [tu1]α = t[u1]α ,

for u1, u2 ∈ Fk and α ∈ I .
A function u in F(X) is called convex if for any α ∈ I , the level set u(α) is a convex

subset of X. Let Fkc = Fkc(X) be the family of all compact convex functions u in F . It is also
identified with the subspace Dd(I ;Kkc) = Dd(I ;Kkc(X)) of D(I ;Kkc) = D(I ;Kkc(X))

which consists of all functions u : I → Kkc being decreasing and left continuous in (0, 1]
and satisfying u(0) = clu(0+).

DEFINITION 2.2. An F(X)-valued random variable or a random upper semicontinu-
ous function is a function X : Ω → F(X), such that [X(ω)]α = {x ∈ X; X(ω)(x) ≥ α} is a
set-valued random variable for every α ∈ (0, 1].

In what follows, we also denote [X(ω)]α by X(α). Further, we set X(0) := X(0+) as in
the above. An Fk(X)-valued random variable is defined through the same way. A sequence
of Fk(X)-valued random variables {Xn}n∈N is called to be independent if for any α ∈ (0, 1],
the sequence of Kk(X)-valued random variables {Xn(α)}n∈N is independent.

Now, we introduce two metrics in Fk(X), the metric dQ and the Hausdorff graph metric
dG. In what follows, the topology induced by a metric d is called d-topology. Moreover,
denote by Bd(Fk(X)) the topological Borel field of the space Fk(X) with respect to the d-
topology.

First, we review the dQ-metric. Let Q = {αk; k ∈ N} be a countable dense subset of I

including 0 and 1. A dQ-metric is defined by

dQ(u1, u2) =
∞∑

k=1

1

2k

dH(u1(αk), u2(αk))

1 + dH (u1(αk), u2(αk))
,

for u1, u2 ∈ D(I ;Kk). It is a metric on D(I ;Kk), since the relation dQ(u1, u2) = 0 im-
plies u1 = u2. The other conditions in the definition of metric are easily verified. Note that
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the space D(I ;Kk) is embedded into the product space
∏

α∈Q(Kk, dH )α, where (Kk, dH )α

is a copy of (Kk, dH ), and is identified with a subspace of
∏

α∈Q(Kk, dH )α. Through this
identification, dQ induces the relative topology on the subspace of the product topology in∏

α∈Q(Kk, dH )α. Since
∏

α∈Q(Kk, dH )α is separable with respect to the product topology,
so is D(I ;Kk) with respect to that induced by dQ. Finally, the metric dQ also is regarded
as a metric on Fk (resp. Fkc) through the identification of Fk and Dd(I ;Kk) (resp. Fkc and
Dd(I ;Kkc)) again.

We next review the Hausdorff graph metric. Let, for u ∈ Dd(I ;Kk),

G(u) = cl{(α, x); α ∈ (0, 1], x ∈ u(α)}
= {{α} × u(α); α ∈ I } .

Then the graph G(u) is compact in I × Kk(X) with the product topology. Denote

dG(u1, u2) = dH (G(u1),G(u2)) ,

where dH is the Hausdorff metric on Kk(I × X) equipped with the metric

dI×X((α, x), (β, y)) = |α − β| ∨ ‖x − y‖X ,

which induces the product topology. We also regard the graph metric dG as a metric on Fk

(resp. Fkc) through the identification of Fk and Dd(I ;Kk) (resp. Fkc and Dd(I ;Kkc)) again.

THEOREM 2.3 ([7, Theorem 7.2.1]). Let u, u1, u2, . . . ∈ Fk(X). If limn→∞ dQ(un,

u) = 0 for some countable dense subset Q of I including 0 and 1, then limn→∞ dG(un, u) =
0.

Finally, let C(Fk(X)) be the cylindrical σ -field, that is, the σ -field generated by the
family

{u ∈ Fk(X); u(α) ∈ U} , α ∈ I, U ∈ BdH (Kk(X)) .

Then we have C(Fk(X)) = BdQ(Fk(X)) = BdG(Fk(X)) (see [8, Theorem 2.10 and Lemma
2.11]).

3. Large deviations for random upper semicontinuous functions. First, we define
rate functions and LDP following Dembo and Zeitouni [3]. Let X be a topological space so
that open and closed subsets of X are well-defined.

DEFINITION 3.1. (1) A rate function J is a lower semicontinuous mapping J :
X → [0,∞].

(2) A good rate function is a rate function for which all the level sets ΨJ (α) =
{x; J (x) ≤ α} are compact subsets of X .
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DEFINITION 3.2. A family of probability measures {µn} on a measurable space
(X ,B) is said to satisfy the LDP with the rate function J if for all Γ ∈ B,

− inf
x∈Γ ◦ J (x) ≤ lim inf

n→∞
1

n
log µn(Γ )

≤ lim sup
n→∞

1

n
log µn(Γ ) ≤ − inf

x∈Γ̄
J (x) ,

(3.1)

where Γ ◦ and Γ̄ are the interior and the closure of Γ respectively.

Suppose that all the compact subsets of X belong to B. A family of probability measures
{µn} is said to satisfy the weak LDP with the rate function J if the upper bound of (3.1) hold
for every α < ∞ and all compact subsets of ΨJ (α)c, and the lower bound of (3.1) holds for
all measurable sets. A family of probability measures {µn} on X is exponentially tight if for
every L < ∞, there exists a compact subset KL of X such that

lim sup
n→∞

1

n
log µn(K

c
L) < −L .

LEMMA 3.3 ([3, Lemma 1.2.18]). Let {µn} be exponentially tight. If {µn} satisfies the
weak LDP with a rate function J , then J is a good rate function and satisfies the LDP.

ASSUMPTION 3.4. (a) X is a locally convex, Hausdorff, topological real vector
space. E is a closed, convex subset of X such that µ(E) = 1 and E can be made into a
Polish space with respect to the topology induced by X .

(b) The closed convex hull of each compact subset K ⊂ E is compact.

The following is the extension of Cramér’s theorem.

THEOREM 3.5 ([3, Theorem 6.1.3]). Let Assumption 3.4 hold. Then {µn} satisfies in
X (and E) a weak LDP with rate function Λ∗

X , where

Λ∗
X (x) = sup

λ∈X ∗
{〈λ, x〉 − ΛX (λ)} , x ∈ X ,

ΛX (λ) = log E[e〈λ,x〉] , λ ∈ X ∗ .

We suppose that X is of type p > 1, i.e., there exists a constant c such that

E

[∥∥∥∥
n∑

i=1

fi

∥∥∥∥
p

X

]
≤ c

n∑
i=1

E[‖fi‖p

X] ,

for any independent random variables f1, f2, . . . , fn with values in X and mean zero.
For each u ∈ Fkc(X), define the support function s(u(α))(x∗) : B∗ → R by

s(u(α))(x∗) = sup{〈x∗, y〉; y ∈ u(α)} , x∗ ∈ B∗ .

Then, it satisfies the following properties:
(1) s(u(α))(x∗) is subadditive, i.e., for x∗, y∗ ∈ B∗,

s(u(α))(x∗ + y∗) ≤ s(u(α))(x∗) + s(u(α))(y∗) ,



218 Y. OGURA AND T. SETOKUCHI

(2) s(u(α))(x∗) is positive homogeneous, i.e., for x∗ ∈ B∗ and λ ≥ 0,

s(u(α))(λx∗) = λs(u(α))(x∗) .

Let XQ = ∏
α∈Q(C(B∗, w∗), ‖ · ‖C(B∗))α be endowed with the product topology, which

is induced by the metric

dXQ
(s(u1), s(u2)) =

∞∑
k=1

1

2k

‖s(u1(αk)) − s(u2(αk))‖C(B∗)
1 + ‖s(u1(αk)) − s(u2(αk))‖C(B∗)

,

for u1 = (u1(αk))k∈N , u2 = (u2(αk))k∈N . Then (XQ, dXQ
) is a Hausdorff topological vector

space with respect to the ordinary operations:

(s(u1) + s(u2))(αk)(x
∗) = s(u1(αk))(x

∗) + s(u2(αk))(x
∗) , x∗ ∈ B∗ , k ∈ N ,

(ts(u1))(αk)(x
∗) = ts(u1(αk))(x

∗) , x∗ ∈ B∗ , t ∈ R , k ∈ N .

It is locally convex since the system of convex sets

{s(v) ∈ XQ; ‖s(v(αki )) − s(u(αki ))‖C(B∗) < εi, i = 1, 2, . . . , n} ,

αki ∈ Q, εi > 0, i = 1, 2, . . . , n, n ∈ N , is a base of the neighborhood of s(u) for any
s(u) ∈ (XQ, dXQ

).

THEOREM 3.6. Let X,X1, . . . , Xn be Fk(X)-valued i.i.d. random variables with

E[exp{λ‖X(0)‖K}] < ∞ , f or any λ > 0 .(3.2)

Let

Λ(λ) = log E[e〈λ,s(X)〉] , λ ∈ X ∗
Q ,

Λ∗(u) = Λ∗(s(u)) = sup
λ∈X ∗

Q

{〈λ, s(u)〉 − Λ(λ)} , u ∈ Fkc(X) .

For a non-convex set u ∈ Fk(X) we set Λ∗(u) = +∞. Denote by µn the law of Ŝn =
(
∑n

i=1 Xi)/n. Then {µn} satisfies the LDP on (Fk(X),BdQ(Fk(X))) with the good rate func-
tion Λ∗, i.e., for any U ∈ BdQ(Fk(X)),

− inf
u∈U◦ Λ∗(u) ≤ lim inf

n→∞
1

n
log µn(U)

≤ lim sup
n→∞

1

n
log µn(U) ≤ − inf

u∈Ū
Λ∗(u) ,

(3.3)

where U◦ and Ū are the interior and the closure of U with respect to the dQ-topology.

In the general case, where the sequence X,X1, . . . , Xn are not necessarily convex, we
set Ŝn = (

∑n
i=1 Xi)/n and Ŝco

n = (
∑n

i=1 coXi)/n. We will use the following lemmas.

LEMMA 3.7 ([2, Lemma 2]). Let X1,X2, . . . , Xn beKk(X)-valued i.i.d. random vari-
ables. Then for any δ > 0,

lim
n→∞

1

n
log P(dH (Ŝn, Ŝ

co
n ) ≥ δ) = −∞ .
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LEMMA 3.8. Let X1,X2, . . . , Xn be Fk(X)-valued i.i.d. random variables. Then for
any δ > 0,

lim
n→∞

1

n
log P(dQ(Ŝn, Ŝ

co
n ) ≥ δ) = −∞ .

PROOF. For any δ > 0, there exists a natural number N such that

∞∑
k=N+1

1

2k

dH (Ŝn(αk), Ŝ
co
n (αk))

1 + dH (Ŝn(αk), Ŝco
n (αk))

≤
∞∑

k=N+1

1

2k
<

δ

2
.

Therefore,

{dQ(Ŝn, Ŝ
co
n ) ≥ δ} =

{ ∞∑
k=1

1

2k

dH (Ŝn(αk), Ŝ
co
n (αk))

1 + dH (Ŝn(αk), Ŝco
n (αk))

≥ δ

}

⊂
{ N∑

k=1

1

2k

dH (Ŝn(αk), Ŝ
co
n (αk))

1 + dH (Ŝn(αk), Ŝco
n (αk))

>
δ

2

}

⊂
N⋃

k=1

{
1

2k

dH(Ŝn(αk), Ŝ
co
n (αk))

1 + dH (Ŝn(αk), Ŝco
n (αk))

>
δ

2N

}
.

Hence we have

P(dQ(Ŝn, Ŝ
co
n ) ≥ δ) ≤ P

( N⋃
k=1

{
1

2k

dH (Ŝn(αk), Ŝ
co
n (αk))

1 + dH (Ŝn(αk), Ŝco
n (αk))

>
δ

2N

})

≤
N∑

k=1

P

(
dH (Ŝn(αk), Ŝ

co
n (αk)) >

2kδ

2N

)
.

Since Ŝn(αk) and Ŝco
n (αk) are elements of Kk(X), the proof of Lemma 3.8 is completed from

Lemma 3.7. �

PROOF OF THEOREM 3.6. Step 1. Assume first that the sequence X,X1, . . . , Xn are

convex. Let X = XQ, E = s(Fkc(X))
dXQ , where s(Fkc(X))

dXQ is the closure of s(Fkc(X))

with respect to the dXQ
-topology. Then the space E is a closed, convex subset of X . Since the

space X is complete with respect to the dXQ
-topology, so E is complete. We will show that

E is separable. Indeed, the space D(I ;Kk) is separable with respect to the dQ-topology, so is
s(Fkc(X)) with respect to the dXQ

-topology. Hence E is separable.
We now check condition (b) in Assumption 3.4. Take a compact set K ⊂ E . Since X is

a complete, locally convex, Hausdorff, topological vector space, the closed convex hull of K

is compact.
Denote by µ

s,co
n the law of Ŝ

s,co
n = (

∑n
i=1 s(coXi))/n. Now Assumption 3.4 is fulfilled

and, due to Theorem 3.5, the family {µs,co
n } satisfy a weak LDP with the rate function

Λ∗
X (s(u)) = sup

λ∈X ∗
{〈λ, s(u)〉 − ΛX (λ)} , u ∈ Fkc(X) .
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From (3.2), the family of probability measures {µs,co
n } is exponentially tight (see [4, Theorem

3.3.11]). Hence, due to Lemma 3.3, the family {µs,co
n } satisfies the LDP with the rate function

Λ∗
X (s(u)), i.e., for any Ũ ∈ BdXQ

(X ),

− inf
s(u)∈Int(Ũ)

Λ∗
X (s(u)) ≤ lim inf

n→∞
1

n
log µs,co

n (Ũ)

≤ lim sup
n→∞

1

n
log µs,co

n (Ũ) ≤ − inf
s(u)∈cl(Ũ)

Λ∗
X (s(u)) ,

where Int(Ũ) and cl(Ũ) are the interior and the closure of Ũ with respect to the dXQ
-topology.

Step 2. Next, we pull back this LDP to the space Fkc(X) with the help of the isometry
s. We denote by µco

n the law of Ŝco
n = (

∑n
i=1 coXi)/n. Since for any u ∈ Fkc(X),

Λ∗(u) = Λ∗
X (s(u)) ,

we obtain, for any U ∈ BdQ(Fkc(X)),

− inf
u∈U◦ Λ∗(u) ≤ lim inf

n→∞
1

n
log µco

n (U)

≤ lim sup
n→∞

1

n
log µco

n (U) ≤ − inf
u∈Ū

Λ∗(u) ,

where U◦ and Ū are the interior and the closure of U with respect to the dQ-topology.
Step 3. Now, we prove the lower bound of (3.3). Let U ∈ BdQ(Fk(X)) and u ∈ U◦ (if

U◦ ∩ Fkc(X) is empty, there is nothing to prove). Then there exists a δ > 0 such that

{v ∈ Fk(X); dQ(u, v) < δ} ⊂ U .

We then have

P(Ŝn ∈ U) ≥ P(dQ(Ŝn, u) < δ)

≥ P

(
dQ(Ŝco

n , u) <
δ

2
, dQ(Ŝn, Ŝ

co
n ) <

δ

2

)

≥ P

(
dQ(Ŝco

n , u) <
δ

2

)
− P

(
dQ(Ŝn, Ŝ

co
n ) ≥ δ

2

)
.

Thus

P(Ŝn ∈ U) + P

(
dQ(Ŝn, Ŝ

co
n ) ≥ δ

2

)
≥ P

(
dQ(Ŝco

n , u) <
δ

2

)
.

Hence

lim inf
n→∞

1

n
log

{
P (Ŝn ∈ U) + P

(
dQ(Ŝn, Ŝ

co
n ) ≥ δ

2

)}

≥ lim inf
n→∞

1

n
log P

(
dQ(Ŝco

n , u) <
δ

2

)
.

(3.4)
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On the other hand, from Lemma 3.8 we obtain

LHS of (3.4) = lim inf
n→∞

1

n
log P(Ŝn ∈ U) ∨ lim inf

n→∞
1

n
log P

(
dQ(Ŝn, Ŝ

co
n ) ≥ δ

2

)

= lim inf
n→∞

1

n
log P(Ŝn ∈ U) ,

where a ∨ b stands for the maximum of a and b. Hence

lim inf
n→∞

1

n
log P(Ŝn ∈ U) ≥ lim inf

n→∞
1

n
log P

(
dQ(Ŝco

n , u) <
δ

2

)

= lim inf
n→∞

1

n
log P(Ŝco

n ∈ Bδ/2(u)) ,

where Bδ/2(u) denotes the ball of radius δ/2 and at center u with respect to the dQ-metric.
Applying LDP to {Ŝco

n }, we have

lim inf
n→∞

1

n
log P(Ŝco

n ∈ Bδ/2(u)) ≥ − inf
v∈Bδ/2(u)

Λ∗(v)

≥ −Λ∗(u) .

This implies

lim inf
n→∞

1

n
log P(Ŝn ∈ U) ≥ −Λ∗(u) .

Taking the supermum over all sets u in U◦, we have

lim inf
n→∞

1

n
log P(Ŝn ∈ U) ≥ − inf

u∈U◦ Λ∗(u) .

Finally, we prove the upper bound of (3.3). Let U ∈ BdQ(Fk(X)). For any δ > 0, let

Uδ = {A ∈ Fk(X); dQ(A,U) ≤ δ} .

Then

P(Ŝn ∈ U) ≤ P(Ŝco
n ∈ Uδ) + P(dQ(Ŝn, Ŝ

co
n ) > δ) .

This with Lemma 3.8 ensures

lim sup
n→∞

1

n
log P(Ŝn ∈ U) ≤ lim sup

n→∞
1

n
log{P(Ŝco

n ∈ Uδ) + P(dQ(Ŝn, Ŝ
co
n ) > δ)}

= lim sup
n→∞

1

n
log P(Ŝco

n ∈ Uδ) ∨ lim sup
n→∞

1

n
log P(dQ(Ŝn, Ŝ

co
n ) > δ)

= lim sup
n→∞

1

n
log P(Ŝco

n ∈ Uδ) .

Applying LDP to {Ŝco
n }, we have

lim sup
n→∞

1

n
log P(Ŝco

n ∈ Uδ) ≤ − inf
u∈U δ

Λ∗(u) ,
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and hence

lim sup
n→∞

1

n
log P(Ŝn ∈ U) ≤ − inf

u∈U δ
Λ∗(u) .(3.5)

In addition,
⋂

δ>0 Uδ = Ū . Since Λ∗ is a good rate function, we have that

lim inf
δ→0

{Λ∗(u); u ∈ Uδ} = inf{Λ∗(u); u ∈ Ū ∩ Fk(X)} .

Indeed, the right-hand side is clearly larger than the left-hand side. Let {un}n∈N be a sequence
such that un belongs to U1/n for any n ∈ N , and Λ∗(un) converges to the left-hand side. Since
the level sets of Λ∗ is a compact subsets in Fk(X), we can choose from {un}n∈N a subsequence
converging to an upper semicontinuous function u which necessarily belongs to Ū ∩ Fk(X).
By the lower semicontinuity of Λ∗, we see that Λ∗(u) is smaller than the left-hand side.

Hence, on letting δ → 0 in (3.5), we obtain

lim sup
n→∞

1

n
log P(Ŝn ∈ U) ≤ − inf

u∈Ū
Λ∗(u) .

This completes the proof of theorem. �

COROLLARY 3.9. Under the same assumptions and notation as in Theorem 2.3, the
family of probability measures {µn} satisfies the LDP on (Fk(X),BdG(Fk(X))) with the good
rate function Λ∗.

PROOF. This is clear from Theorem 2.3, because every dG-open set is a dQ-open set
and every dG-closed set is a dQ-closed set. �
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