
ON THE DISCREPANCY OF IRRATIONAL
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PARTIAL QUOTIENTS: LONG TERM EFFECTS∗
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Abstract. Setokuchi and Takashima [7] gave general mathematical ex-
planations for the emergence of several parabola-like hills in the behavior
of the discrepancies of irrational rotations having single isolated large
partial quotient, in somewhat short range of N . We extend estimates in
[7] and give some general conditions which ensure repetitions of hills in
much longer range of N . For example, in case of 1 − log10 7, our condi-
tions show that more than 2.7× 1027 repetitions of hills exist, where N
runs up to over 6.8× 1033.

1. Introduction

For an irrational number α ∈ (0, 1), the sequence {nα}, n ∈ N, is well
known to be uniformly distributed mod 1, and its discrepancy DN (nα) de-
fined by

DN (nα) = sup
0≤a<b≤1

∣∣∣∣∣ 1N
N∑

n=1

1[a,b)({nα})− (b− a)

∣∣∣∣∣ ,
tends to zero as N → ∞, where {nα} denotes the fractional part of nα, and
1[a,b) denotes the indicator function of the interval [a, b) (cf. e.g. Drmota and
Tichy [1], Kuipers and Niederreiter [3] and Weyl [8]).

Kesten [2] shows the following limit theorem:

lim
N→∞

NDN (nα)

logN log logN
=

2

π2
in measure.
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Figure 1. D∗
N (nα), α = 1−log10 7, up to N = 2q10, every 10,000

points. q6 = 2,455,069, q7 = 2,455,579, q8 = 4,910,648, 2q8 =
9,821,296, q9 = 12,276,875, 2q9 = 24,553,750, q10 = 29,464,398,
2q10 = 58,928,796.

Kesten’s result means that in a stochastic sense, DN (nα) decreases regu-
larly, with a speed of cN−1 logN log logN . However, this does not mean a
regular behavior of DN (nα) for almost all α. Setokuchi and Takashima [7]
showed that isolated large digits in the continued fraction expansion of α
lead to a series of inverted parabolas in the graph of DN (nα) and the pur-
pose of the present paper is to investigate this phenomenon in more detail,
proving that the effect of a large digit is much longer than shown in [7].

Setokuchi and Takashima [7] gave very detailed estimations for the dis-
crepancies by improving Schoissengeier’s results in [5], and they report the
unusual behavior of the discrepancies of irrational rotations based on some
specific numbers having single isolated large partial quotient aη (η denotes
the order of isolated large partial quotient) in their continued fraction expan-
sion. They reveal how the existence of a single isolated large partial quotient
does influence the behavior of the discrepancies. They, however, consider N ’s
only over rather short range (at most 10 millions), and they explain 4 or 5
repetitions of “hills”. Thus it seems insufficient to compare their results and
the limiting behavior shown by Kesten [2].

In this paper we extend estimates in [7], and give some general conditions
for repetitions of hills of discrepancies. In improving and extending their
results, we take into account the fact that there are two types of “valleys”,
one-point valley and wider valley. We give how one-point valleys and wider
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valleys will emerge according to whether aj is equal to or is larger than 1.
We improve some theorems in [7] by using information derived from such
considerations on emergence of valleys. We apply our results on much larger
N ’s and explain repetitions of much more hills than those dealt with in [7].
For example, in case of 1− log10 7, our general conditions are valid over an
incomparably longer range of N , discussed in [7]. We show that hills repeat
unexpectedly many times, more than 2.7× 1027 times, where N runs up to
over 6.8× 1033. For other irrational numbers with single isolated large par-
tial quotient which are not restricted to the common logarithm, our general
conditions ensure occurrences of repeated hills much more times. Schoissen-
geier’s results are restricted to “finite” ranges of N ’s, and our results are also
restricted to finite ranges. Although our results are, of course, not directly
comparable with Kesten’s limit theorem, they can be applied for long ranges
of N ’s.

We consider, as examples, not only the case of 1 − log10 7, but also the
cases of 2 − log10 33 and 2 − log10 54. Our results are valid for general irra-
tional numbers with single isolated large partial quotient, and these specific
irrational numbers play very interesting and important role in the problem
of the leading digits of the power an, for a = 33 or a = 54. The problem of
the leading digits of an is closely related to the studies of irrational rotations
based on log10 a. Mori and Takashima [4] reported very unusual phenomena
observed in the behavior of the chi-square tests of the leading digits of an,
for a = 7, a = 33 and a = 54. For these natural numbers, we will show later
that the continued fraction expansions of log10 a have isolated large partial
quotients. Mori and Takashima [4] gave mathematical explanations for such
unusual phenomena, and they show the unusual graphs in these cases with
slightly different shapes. These problems of the leading digits are very deeply
connected with the problems of the discrepancies, and we have much interest
in the discrepancies of irrational rotations based on such specific numbers.

2. Repetitions of parabola-like hills

We first provide some notions and notations according to Drmota and
Tichy [1]. Let (nα)n∈N be an irrational rotation based on an irrational num-
ber α, 0 < α < 1/2,

(nα)n∈N = {{nα} : n ∈ N},

and we use discrepancies D∗
N of (nα)n∈N defined by

D∗
N (nα) = sup

0<a≤1

∣∣∣∣∣ 1N
N∑

n=1

1[0,a)({nα})− a

∣∣∣∣∣ .
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It is well-known that always D∗
N ≤ DN ≤ 2D∗

N and two types of discrep-
ancies DN and D∗

N have essentially the same behavior. In this paper we
consider only D∗

N . We denote the continued fraction expansion of α by

α = a0 +
1

a1 +
1

a2 + · · ·
= [a0; a1, a2, . . .]

with convergents rn = pn/qn = [a0; a1, a2, . . . , an]. For a natural number N ,
the Ostrowski representation of N to base α is given as follows:

N =

m∑
j=0

bjqj

with 0 ≤ bj ≤ aj+1 for 0 < j < m, 0 ≤ b0 < a1, 0 < bm ≤ am+1, and
bj−1 = 0 if bj = aj+1, where qm ≤ N < qm+1.

Since emergence of valleys and hills depend on α, we first consider mainly
the case where α = 1−log10 7. For other α having single isolated large partial
quotient, our arguments are still valid with appropriate modifications. The
continued fraction expansion of 1− log10 7 is given by

1− log10 7 = [0;6, 2, 5, 6, 1, 4813, 1, 1, 2, 2, 2, 1, 1, 1, 6, 5, 1, 83, 7, 2,

1, 1, 1, 8, 5, 21, 1, 1, 3, 2, 1, 4, 2, 3, 14, 2, 6, 1, 1, 5,

2, 1, 2, 4, 26, 2, 6, 1, 5, 1, 1, 2, 2, 3, 6, 2, 2, 103, 2, 2,

1084, . . .],

(1)

and 1 − log10 7 has a single isolated large partial quotient a6 = 4813 in the
early part of its continued fraction expansion. We then denote the order 6
of a6 by η, that is, η = 6. This η may vary according to α.

2.1. Upper estimates of endpoints of valleys

Table 1 shows endpoints of valleys in Fig. 1 for qη (= q6) ≤ N ≤ q10. The
valleys for q10 < N ≤ 2q10 are similar to Table 1 by adding q10. Then there
are two types of valleys in Fig. 1, “one-point valley” and “wider valley”:

2nd, 4th, 7th, 9th, 12th valleys, and so on, consist of only one-point N ,
whereas 1st, 3rd, 5th, 6th, 8th, 10th, 11th valleys, and so on, have two
endpoints, for example, 1st valley has endpoints qη and qη+1 (see Fig. 2).
These two-point valleys are a little “wider” than the one-point valleys. They
have a common “width” qη−1 = qη+1 − qη (= 510).

In general, endpoints of valleys are represented by the following specific
values of N , having coefficients b0 = · · · = bη−1 = 0 and 0 ≤ bj ≤ aj+1 for
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Table 1. Endpoints of the kth valley in Fig. 1, k = 1, 2, . . . , 12.

k 1 2 3 4 5 6 7

N
q6 q8

q8 + q6 2q8
2q8 + q6 q9 + q6 q9 + q8q7 q8 + q7 q9 (= 2q8 + q7) q9 + q7

k 8 9 10 11 12

N
q9 + q8 + q6 q9 + 2q8

q9 + 2q8 + q6 2q9 + q6 q10q9 + q8 + q7 2q9 (= q9 + 2q8 + q7) 2q9 + q7

0

5e-007

1e-006

1.5e-006

2e-006

q6 − 255 q6 q6 + 255 q7 q7 + 255

Figure 2. D∗
N (nα), α = 1 − log10 7, N ∈ [q6 − 255, q7 + 255),

every point. q6 = 2,455,069, q7 = 2,455,579.

η ≤ j ≤ m with bm > 0:

N =

m∑
j=η

bjqj . (2)

Setokuchi and Takashima [7] treated mainly 1st, 2nd, 3rd and 4th valleys
(cf. [7, Theorem 4.2]). We extend their estimates to obtain estimates for
more general valleys, for example, 5th, 6th, 7th valleys, and so on. We first
give the following result:
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Theorem 2.1. Let 0 < α < 1/2 be an irrational number. Put iN = min{j ≥
0 : bj ̸= 0}. Then we have

ND∗
N (nα) < max

 [m/2]∑
j=[(iN+1)/2]

b2j ,

[(m−1)/2]∑
j=[iN/2]

b2j+1

+

[
m− iN

2

]
+ 2 (3)

for N =
∑m

j=η bjqj, 0 ≤ bj ≤ aj+1 for η ≤ j ≤ m with bm > 0.

Let

M(N) = max

 [m/2]∑
j=0

j ̸=(η−1)/2

a2j+1,

[(m+1)/2]∑
j=1

j ̸=η/2

a2j

 . (4)

From Theorem 2.1, we obtain the following estimate, which is simpler than
that of Theorem 2.1.

Theorem 2.2. Let 0 < α < 1/2 be an irrational number. If η ≥ 3, then we
have

D∗
N (nα) <

2M(N)

N
(5)

for N =
∑m

j=η bjqj, 0 ≤ bj ≤ aj+1 for η ≤ j ≤ m with bm > 0.

Theorems 2.1 and 2.2 give upper estimates for general endpoints of valleys.
For example, in case of 1 − log10 7, these theorems are applicable not only
to endpoints of valleys in Fig. 1, but also to endpoints of valleys beyond the
range shown in Fig. 1. We use Theorem 2.2 later in Subsection 2.3 together
with Theorems 2.3 and 2.4 to compare the magnitude of D∗

N (nα) for peaks
of hills with the magnitude of D∗

N (nα) for valleys.

2.2. Upper estimates over wider valleys

We next give estimates for the whole of a wider valley. In [7], Setokuchi
and Takashima gave the upper estimate for wider valleys (cf. [7, Theorem
4.3]). Their estimate is, however, only for 1st and 3rd valleys.

To give estimates for more general wider valleys, we introduce the follow-
ing notation:

Iw =
m∪

k=η+1

∪
b′js

 k∑
j=η+1

bη+1 ̸=aη+2

bjqj + aη+1qη,
k∑

j=η+1
bη+1 ̸=aη+2

bjqj + qη+1


 , (6)
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where ∪b′js
denotes the union of intervals over bj ’s, satisfying the Ostrowski

representation rule; 0 ≤ bj ≤ aj+1 for η + 1 ≤ j ≤ k, and bj−1 = 0 if
bj = aj+1.

In the notation (6), each [·) denotes one wider valley, and Iw denotes
the union of all wider valleys up to qm+1. The length of each wider valley
is equal to qη−1 = qη+1 − aη+1qη, by the well-known recurrence formula
qj+1 = aj+1qj + qj−1.

Remark 1. The problem how wider valleys occur depends on aη+1, aη+2,
. . ., am. For example, in the interval [qη, qη+1), one wider valley formed by

[aη+1qη, qη+1)

occurs, and points N = bηqη, 1 ≤ bη < aη+1, are one-point valley. On the
other hand, in the interval [qη+1, qη+2), wider valleys formed by

[bη+1qη+1 + aη+1qη, (bη+1 + 1)qη+1),

1 ≤ bη+1 < aη+2, occur (aη+2−1) times, and points N = bη+1qη+1+bηqη, 1 ≤
bη+1 < aη+2, 1 ≤ bη < aη+1, are one-point valley. For further intervals, the
problem of occurrence of wider valleys becomes somewhat more complicated.
In the interval [qη+2, qη+3), wider valleys occur (aη+3+(aη+3−1)(aη+2−1))
times; in the interval [qη+3, qη+4), wider valleys occur (aη+4 + aη+4(aη+2 −
1) + (aη+4 − 1)aη+3 + (aη+4 − 1)(aη+3 − 1)(aη+2 − 1)) times; and so on.

We then obtain the following upper estimate for D∗
N (nα) for much more

wider valleys than those dealt with in [7].

Theorem 2.3. Let 0 < α < 1/2 be an irrational number. If M(N) satisfies

M(N) ≥
[
m+ 1

2

]
+ 2, (7)

then we have

D∗
N (nα) <

2M(N)

N
(8)

for N ∈ Iw.

By the definition (4) of M(N), we note that the condition (7) in Theorem
2.3 is not too strict: if α satisfies M(N) > [(m+1)/2] + 2 for some N ′ ≥ qη,
then the condition (7) is satisfied for all N ≥ N ′. For example, in case of
α = 1 − log10 7, the condition (7) is satisfied for all N ≥ qη. Therefore
Theorem 2.3 is still valid for N (∈ Iw) greater than the points treated in
Fig. 1.

Remark 2. The upper bound of Theorem 2.3, (8), is the same as that of
Theorem 2.2, (5). Theorem 2.2 might seem to be included Theorem 2.3, at
first sight, but N =

∑m
j=η bjqj represented by (2), does not always belong
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to Iw. The coefficient bη in (2) takes values from 0 to aη+1, and only in the
case when bη = aη+1, N belongs to Iw.

2.3. Estimates for parabola-like hills

Next we discuss repetitions of parabola-like hills. Estimates for ND∗
N (nα)

for hills given in [7] are concerned only with several hills (cf. [7, Theorems
4.4 and 4.5]). We can, here, give the following estimate for ND∗

N (nα) for
much more hills.

Theorem 2.4. Let 0 < α < 1/2 be an irrational number. Assume that α
has single isolated large partial quotient aη satisfying

aη > 12M(N). (9)

If M(N) satisfies

M(N) ≥ 5, (10)

then we have

−M(N) < ND∗
N (nα)− bη−1

(
1− bη−1

aη

)
< 3M(N) (11)

for N /∈ Iw.

Theorem 2.4 ensures that parabola-like hills repeat while the condition (9)
is satisfied: let f(x) be the quadratic function, f(x) = x(1− x), 0 ≤ x ≤ 1.
Then f(0) = f(1) = 0 and f(1/2) = 1/4. Then the estimate in Theorem 2.4,
(11), can be rewritten in the form

−M(N) < ND∗
N (nα)− aηf(x

′) < 3M(N) for x′ =
N ′

aηqη−1
,

where N ′ = N −
∑m

j=0,j ̸=η−1 bjqj if N /∈ Iw. It is easily seen that the “peak”

of each “hill” is estimated from below by aηf(1/2) − M(N). Thus, for α
satisfying the condition (9), aη > 12M(N), the peak of each hill is much
larger than the upper bound 2M(N) at the valley’s shown in Theorem 2.2,
(5), and Theorem 2.3, (8),

aηf

(
1

2

)
−M(N) ≒ aη

4
−M(N) > 2M(N).

By using Theorem 2.4, we consider how many times parabola-like hills
repeat.
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Example 1. In case of α = 1− log10 7, α satisfies the condition (9) for m ≤
59 (N < q60), but does not satisfy the condition (9) for m ≥ 60 (N ≥ q60)
due to the influence of rather large 61st partial quotient, a61 = 1084:

M(N) = max

(
59∑
j=1

j odd, j ̸=η

aj ,
60∑
j=2

j even, j ̸=η

aj

)
= 272, if m = 59,

M(N) = max

(
61∑
j=1

j odd, j ̸=η

aj ,

60∑
j=2

j even, j ̸=η

aj

)
= 1205, if m = 60.

Thus Theorem 2.4 ensures that hills occur repeatedly while N runs up to

q60 = 6,856,445,927,562,934,919,532,922,886,126,232 ≒ 6.8× 1033

while the period between valleys equals qη = 2455069. This implies that hills
repeat more than 2.7× 1027 times,

q60
qη + qη−1

> 2.7× 1027,

in consideration of the width of wider valleys qη−1 = 510. The above ex-
planation suggests that hills do not vanish under the influence of slightly
large partial quotients a18 = 83 and a58 = 103 (cf. (1)). To calculate the
values of D∗

N (nα) for such unusually large N ’s is too heavy work for usual
computers. Theorem 2.4 ensures, however, repetitions of hills theoretically
up to N = 6.8× 1033.

In the following of this subsection we give other examples, 2− log10 33 and
2− log10 54.

Example 2. The continued fraction expansion of 2− log10 33 is given by

2− log10 33 = [0; 2, 13, 299, 1, 1, 10, 1, 14, . . .],

and 2 − log10 33 has a rather large isolated 3rd partial quotient, a3 = 299
(i.e., η = 3). In this case, the condition (9) holds for m ≤ 6 (N < q7), but it
does not hold for m ≥ 7 (N ≥ q7), because

M(N) = 24, if m = 6,

M(N) = 38, if m = 7.

Thus hills repeat 22 times during N ∈ [qη, q7) (see Fig. 3). Since the large
partial quotient 299 is not too large in comparison with other quotients
a2 = 13, a6 = 10 and a8 = 14, the condition (9) fails for relatively small m.



10

Example 3. The continued fraction expansion of 2− log10 54 is given by

2− log10 54 = [0; 3, 1, 2, 1, 3, 1, 326, 2, 1, 3, 1, 5, 4, 1, 1, 1, 2, 26, . . .],

and 2 − log10 54 has a rather large isolated 7th partial quotient, a7 = 326
(i.e., η = 7). In this case, the condition (9) holds for m ≤ 16 (N < q17), but
it does not hold for m ≥ 17 (N ≥ q17) due to the influence of the quotient
a18 = 26:

M(N) = 17, if m = 16,

M(N) = 41, if m = 17.

Thus hills starting with N = qη in Fig. 4 repeat more than 3102 times while
N runs up to q17 = 72214041,

q17
qη + qη−1

> 3102,

where qη = 23202 and qη−1 = 71. The large partial quotient 326 is almost
as large as the quotient 299 in case of 2 − log10 33. The condition (9) is,
however, satisfied for a more wider range of N compared with the case of
2− log10 33, because, in case of 2− log10 54, the quotients up to a17 except
the quotient 326 are very small.

Remark 3. In the cases α = 2− log10 33 and α = 2− log10 54, the condition
(9) fails for N = q7 and N = q17, respectively. We can, however, observe
that hills still occur on the range beyond above N ’s (see Figs. 5 and 6).

3. Proofs for results of Section 2

Before giving proofs, we state some results given in [1, 5, 6, 7] that we
need to prove theorems. Let us define the numbers Aj by

Aj = Nj−1(α− rj) +

m∑
t=j

bt(qtα− pt)

for 0 ≤ j ≤ m + 2 and A−1 = 0, where Nj =
∑j

t=0 btqt for 0 ≤ j ≤ m,
N−1 = 0 and Nm = Nm+1 = N . Then Aj satisfies the following properties:

Lemma 3.1. ([1, Lemma 1.62], [7, Section 2, Equation (4)], [5, Section 3,
Proposition 1])

(i) If bj ̸= 0, then (−1)jAj > 0 for 0 ≤ j ≤ m.
(ii) Let P = {j : Aj > 0, 0 ≤ j ≤ m}. If j /∈ P is even, or if j ∈ P is

odd, then aj+1qjAj = qj+1Aj+1 − qj−1Aj−1 for 0 ≤ j ≤ m.
(iii) For 0 ≤ j ≤ m, we have −1/qj+1 < (−1)jAj < 1/qj.
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Figure 3. D∗
N (nα), α = 2 − log10 33, up to N = q7, every 10

points. q3 = 8,075, q4 = 8,102, q5 = 16,177, q6 = 169,872, q7 =

186,049.
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Figure 4. D∗
N (nα), α = 2 − log10 54, up to N = q11, every 10

points. q7 = 23,202, q8 = 46,475, q9 = 69,677, q10 = 255,506,

q11 = 325,183.
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Figure 5. D∗
N (nα), α = 2 − log10 33, N ∈ [q7, 2q7), every 10

points. q7 = 186,049, 2q7 = 372,098.
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Figure 6. D∗
N (nα), α = 2− log10 54, N ∈ [q17, q17 + q11), every

10 points. q11 = 325,183, q17 = 72,214,041, q17 + q11 = 72,539,224.
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The proof of Theorem 2.1 is based on the following Schoissengeier’s result
for ND∗

N (nα) given in the proof of Corollary 1 of Theorem 1 in [6]. We refer
to this result as a separate theorem for convenient reference.

Theorem A. ([6, p.56]) Let 0 < α < 1/2 be an irrational number. Then

ND∗
N (nα) =

[m/2]∑
j=0

b2j(1− q2jA2j) +
∑
j odd
j∈P

aj+1qjAj −
∑
j even
j /∈P

aj+1qjAj

+max

0, A0 −
m∑
j=0

bj((−1)j − qjAj)

+ ε,

(12)

where the error term ε satisfies |ε| ≤ 1, and P = {j : Aj > 0, 0 ≤ j ≤ m}.

The proofs of Theorems 2.3 and 2.4, on the other hand, are based on the
following theorem, which is a refinement of Theorem A, due to Setokuchi
and Takashima [7].

Theorem 3.2. ([7, Theorem 3.1]) Let 0 < α < 1/2 be an irrational number.
Then

ND∗
N (nα)

= max

[m/2]∑
j=0

b2j(1− q2jA2j),

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) +A0

+ c,

(13)

where the error term c satisfies −1 ≤ c < [(m+ 1)/2] + 1.

To estimate the terms b2j(1−q2jA2j) and b2j+1(1+q2j+1A2j+1) in Theorem
A, (12), and Theorem 3.2, (13), we use the following two lemmas:

Lemma 3.3. ([7, Lemma 5.1]) Let α be a positive irrational number. Then
for 0 ≤ j ≤ [m/2] we have

0 ≤ b2j(1− q2jA2j) ≤ b2j , (14)

with equality if and only if b2j = 0. Moreover, for 0 ≤ j ≤ [(m − 1)/2] we
have

0 ≤ b2j+1(1 + q2j+1A2j+1) ≤ b2j+1, (15)

with equality if and only if b2j+1 = 0.

Lemma 3.4. ([7, Lemma 5.2]) Let α be a positive irrational number. Then
for 0 ≤ j ≤ [m/2] we have

b2j

(
1− b2j

a2j+1

)
− 2 < b2j(1− q2jA2j) < b2j

(
1− b2j

a2j+1

)
+ 3. (16)
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Moreover, for 0 ≤ j ≤ [(m− 1)/2] we have

b2j+1

(
1− b2j+1

a2j+2

)
− 2 < b2j+1(1 + q2j+1A2j+1) < b2j+1

(
1− b2j+1

a2j+2

)
+ 3.

(17)

Since aη is large, the coefficient bη−1 can vary very widely, 0 ≤ bη−1 ≤ aη.
Then the degree of accuracy of the estimates (16) (resp. (17)) in Lemma 3.4
is considerably better than that of the estimate (14) (resp. (15)) in Lemma
3.3. Thus we use Lemma 3.4, (16) (resp. (17)), only for the specific term
bη−1(1− qη−1Aη−1) (resp. bη−1(1 + qη−1Aη−1)).

We first prove Theorem 2.1. The proof is based on Theorem A.

Proof of Theorem 2.1. We prove only the case where

iN = min{j ≥ 0 : bj ̸= 0}

is even. The proof of the case where iN is odd can be shown by similar
arguments. Assume that N has coefficients b0 = · · · = bη−1 = 0 and 0 ≤
bj ≤ aj+1 for η ≤ j ≤ m,

N =
m∑
j=η

bjqj .

Then we clearly have A0 = · · · = AiN =
∑m

t=iN
bt(qtα − pt) because b0 =

· · · = biN−1 = 0. Thus, from biN ̸= 0 and Lemma 3.1 (i), we have Aj > 0
for 0 ≤ j ≤ iN . This implies that {j : j ∈ P is odd, 1 ≤ j ≤ iN − 1} =
{1, 3, . . . , iN − 1}, and consequently∑

j odd
j∈P

aj+1qjAj = qiNAiN −A0 +
m∑

j=iN+1
j odd
j∈P

aj+1qjAj , (18)

where we used Lemma 3.1 (ii) for 1 ≤ j ≤ iN − 1. On the other hand, since
{j : j /∈ P is even, 0 ≤ j ≤ iN} = ∅, we have∑

j even
j /∈P

aj+1qjAj =
m∑

j=iN+2
j even
j /∈P

aj+1qjAj . (19)

We now show that∑
j odd
j∈P

aj+1qjAj −
∑
j even
j /∈P

aj+1qjAj < qiNAiN −A0 +

[
m− iN

2

]
.

(20)
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If j /∈ P is even, then j − 1 /∈ P and j + 1 /∈ P ; on the other hand, if j ∈ P
is odd, then j − 1 ∈ P and j + 1 ∈ P (cf. [6, p.55]). Thus it follows from
AiN > 0 and (−1)mAm > 0 that

0 ≤ ♯{j : j ∈ P is odd, iN + 1 ≤ j ≤ m}
+ ♯{j : j /∈ P is even, iN + 2 ≤ j ≤ m} ≤ [(m− iN )/2],

(21)

where ♯(A) denotes the number of elements of a set A. Using (21) and the
facts that aj+1qjAj < 1 if j ∈ P is odd, and −aj+1qjAj < 1 if j /∈ P is even
(cf. [7, Proof of Theorem 3.1]), we have

m∑
j=iN+1
j odd
j∈P

aj+1qjAj −
m∑

j=iN+2
j even
j /∈P

aj+1qjAj <

[
m− iN

2

]
.

This, together with (18) and (19), we arrive at (20). Applying the estimate
(20) and the relation b0 = · · · = biN−1 = 0 to Theorem A, (12), we obtain

ND∗
N (nα)

< max

 [m/2]∑
j=[(iN+1)/2]

b2j(1− q2jA2j),

[(m−1)/2]∑
j=[iN/2]

b2j+1(1 + q2j+1A2j+1) +A0


+ qiNAiN −A0 +

[
m− iN

2

]
+ ε,

where |ε| ≤ 1. Since the specific coefficient bη−1 is always 0 (recall that
iN ≥ η), we use only Lemma 3.3 to estimate the terms b2j(1 − q2jA2j) and
b2j+1(1 + q2j+1A2j+1) in the above expression. As a result, we obtain

ND∗
N (nα) < max

 [m/2]∑
j=[(iN+1)/2]

b2j ,

[(m−1)/2]∑
j=[iN/2]

b2j+1

+

[
m− iN

2

]
+ 2,

where we used qiNAiN < 1. □

We next derive Theorem 2.2 from Theorem 2.1.

Proof of Theorem 2.2. As for the maximum term on the right-hand side
of (3) in Theorem 2.1, we have

[m/2]∑
j=[(iN+1)/2]

b2j =

[m/2]∑
j=0

j ̸=(η−1)/2

b2j <

[m/2]∑
j=0

j ̸=(η−1)/2

a2j+1,
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[(m−1)/2]∑
j=[iN/2]

b2j+1 =

[(m−1)/2]∑
j=0

j ̸=(η−2)/2

b2j+1 <

[(m+1)/2]∑
j=1

j ̸=η/2

a2j ,

and consequently the maximum term in Theorem 2.1 is less than M(N).
Thus it follows from Theorem 2.1 that

ND∗
N (nα) < M(N) +

[
m− iN

2

]
+ 2. (22)

By the property iN ≥ η and the assumption η ≥ 3, we have [(m−iN )/2]+2 ≤
[(m + 1)/2]. Moreover, we have [(m + 1)/2] ≤ M(N) for general irrational
numbers, because aj > 0 for 1 ≤ j ≤ m+1. Thus we obtain [(m−iN )/2]+2 ≤
M(N). This and (22) yield the upper bound 2M(N). □

In the latter part of this section, we give the proofs of Theorems 2.3 and
2.4. The main tools of the proofs are Theorem 3.2, Lemmas 3.3 and 3.4,
which are valid for large but not infinite N ’s. Setokuchi and Takashima [7]
gave the proofs of the upper estimates of wider valleys and hills only for
α = 1− log10 7 and only over rather short ranges of N ’s. We, however, give
the proofs for irrational α’s having single isolated large aη and for long ranges
of N ’s.

Proof of Theorem 2.3. Assume that N ∈ Iw. Then the specific coefficient
bη−1 is always 0 because bη = aη+1 (recall that bj−1 = 0 if bj = aj+1).
Thus we use only Lemma 3.3 to estimate the terms b2j(1 − q2jA2j) and
b2j+1(1 + q2j+1A2j+1) in Theorem 3.2, (13), and we have

[m/2]∑
j=0

b2j(1− q2jA2j) <

[m/2]∑
j=0

j ̸=(η−1)/2

a2j+1,

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1) <

[(m+1)/2]∑
j=1

j ̸=η/2

a2j .

Applying these estimates to Theorem 3.2, (13), we obtain

ND∗
N (nα) < M(N) + |A0|+ c < M(N) +

[
m+ 1

2

]
+ 2,

where we used |A0| < 1 (cf. Lemma 3.1 (iii)) and c < [(m+1)/2] + 1. Thus,
from the condition (7), M(N) ≥ [(m + 1)/2] + 2, we arrive at the upper
bound 2M(N). □
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Proof of Theorem 2.4. Let I denote an interval such that the condition
(9), aη > 12M(N), is satisfied. Assume that N ∈ I \ Iw. Then the specific
coefficient bη−1 takes values 0 ≤ bη−1 ≤ aη over each interval with the length
qη−1 included in I \ Iw. We prove only the case where η is even. The proof
of the case where η is odd, can be shown by similar arguments. By Lemma
3.3, (14), we can estimate the first sum in Theorem 3.2, (13), as follows:

0 ≤
[m/2]∑
j=0

b2j(1− q2jA2j) <

[m/2]∑
j=0

j ̸=(η−1)/2

a2j+1.

On the other hand, we use Lemma 3.4, (17), for bη−1(1 + qη−1Aη−1), and
we apply Lemma 3.3, (15), to the other terms b2j+1(1 + q2j+1A2j+1). As a
result, we have the following estimate for the second sum in Theorem 3.2,
(13):

bη−1

(
1− bη−1

aη

)
− 2 <

[(m−1)/2]∑
j=0

b2j+1(1 + q2j+1A2j+1)

<

[(m+1)/2]∑
j=1

j ̸=η/2

a2j + bη−1

(
1− bη−1

aη

)
+ 3.

By combining these two estimates with Theorem 3.2, (13), we obtain

bη−1

(
1− bη−1

aη

)
− 2− |A0|+ c

< ND∗
N (nα) < bη−1

(
1− bη−1

aη

)
+ 3 +M(N) + |A0|+ c.

Since |A0| < 1 (cf. Lemma 3.1 (iii)) and −1 ≤ c < [(m+ 1)/2] + 1, we have

−4 < ND∗
N (nα)− bη−1

(
1− bη−1

aη

)
< M(N) +

[
m+ 1

2

]
+ 5.

Therefore, by the condition (10), M(N) ≥ 5, and the property [(m+1)/2] ≤
M(N), we obtain the desired result. □
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